(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

SEMESTER – VII

Quantum Computing Code: PEC-CS701A Contacts: 3L

Name of the Course:	Quantum Computing			
Course Code: PEC- CS701A	Semester: VII	Semester: VII		
Duration: 6 months	Maximum Marks	::100		
Teaching Scheme		Examination Scheme		
Theory:3 hrs./week		Mid Semester exam: 15		
Tutorial: NIL	Assignment and Quiz: 10 marks			
	Attendance : 5 marks			
Practical: NIL	Practical: NIL End Semester Exam :70 Marks			
Credit Points:	3			
Objective:				
1 The course will	1 The course will provide an insight of basic of quantum physics from a computer			
scientist's perspective, and how it describes reality and understand the philosophical				
implications of quantum computing				
Pre-Requisite:				
1 Linear Algebra, Theory of Computation				

Unit	Content	Hrs/U	Marks/
		nit	Unit
	Qubit & Quantum States: The Qubit, Vector Spaces. Linear	3	
1	Combination Of Vectors, Uniqueness of a spanning set, basis &		
	dimensions, inner Products, orthonormality, gram-schmidt		
	orthogonalization, bra-ket formalism, the Cauchyschwarez and		
	triangle Inequalities.		
	Matrices & Operators: Observables, The Pauli Operators, Outer	10	
2	Products, The Closure Relation, Representation of operators using		
	matrices, outer products & matrix representation, matrix		
	representation of operators in two dimensional spaces, Pauli		
	Matrix, Hermitian unitary and normal operator, Eigen values &		
	Eigen Vectors, Spectral Decomposition, Trace of an operator,		
	important properties of Trace, Expectation Value of Operator,		
	Projection Operator, Positive Operators,		
2	Commutator Algebra, Heisenberg uncertainty principle, polar		
3.	decomposition & singular values, Postulates of Quantum	5	
	Mechanics.		
4	Turner Destante Durnersting Commercial State in One t	5	
4.	Tensor Products: Representing Composite States in Quantum	5	
	Mechanics, Computing inner products, Tensor products of		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

	column vectors, operators and tensor products of Matrices. Density Operator: Density Operator of Pure & Mix state, Key Properties, Characterizing Mixed State, Practical Trace & Reduce Density Operator, Density Operator & Bloch Vector.		
5.	Quantum Measurement Theory: Distinguishing Quantum states & Measures, Projective Measurements, Measurement on Composite systems, Generalized Measurements, Positive Operator- Valued Measures.	8	
6.	Recent trends in Quantum Computing Research, Quantum Computing Applications of Genetic Programming.	6	

Text book and Reference books:

Quantum Computing without Magic by Zdzisław Meglicki

- 2. Quantum Computing Explained By DAVID Mc MAHON
- 3. Quantum Computer Science By Marco Lanzagorta, Jeffrey Uhlmann
- 4. An Introduction to Quantum Computing Phillip Kaye, Raymond Laflamme, Michele Mosca.

Course Outcomes:

On completion of the course students will be able to knowledge of Vector spaces, Matrices, Quantum state, Density operator and Quantum

Cloud Computing Code: PEC-CS701B Contact: 3L

Name of the Course:	Cloud Computing	
Course Code: PEC-CS701B	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Definition of Cloud Computing and its Basics (Lectures). Defining a Cloud, Cloud Types – NIST model, Cloud Cube	9	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

	model, Deployment models (Public , Private, Hybrid and Community Clouds), Service Platform as a Service, Software as a Service with examples of services/ service providers, models – Infrastructure as a Service, Cloud Reference model, Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing, A brief introduction on Composability, Infrastructure, Platforms, Virtual Appliances, Communication Protocols, Applications, Connecting to the Cloud by Clients, IaaS – Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos PaaS – Basic concept, tools and development environment with examples SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform Identity as a Service (IDaaS) Compliance as a Service (CaaS)	
2	Use of Platforms in Cloud Computing Concepts of Abstraction and Virtualization Virtualization technologies : Types of virtualization (access, application, CPU, storage), Mobility patterns (P2V, V2V, V2P, P2P, D2C, C2C, C2D, D2D) Load Balancing and Virtualization: Basic Concepts, Network resources for load balancing, Advanced load balancing (including Application Delivery Controller and Application Delivery Network), Mention of The Google Cloud as an example of use of load balancing Hypervisors: Virtual machine technology and types, VMware vSphere Machine Imaging (including mention of Open Virtualization Format – OVF) Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance,Concepts of Platform as a Service, Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application development Use of PaaS Application frameworks,	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

		1	
	Discussion of Google Applications Portfolio –		
	Indexed search, Dark Web, Aggregation and		
	disintermediation, Productivity applications		
	and service, Adwords, Google Analytics,		
	Google Translate, a brief discussion on Google		
	Toolkit (including introduction of Google		
	APIs in brief), major features of Google App		
	Engine service., Discussion of Google		
	Applications Portfolio – Indexed search, Dark		
	Web, Aggregation and disintermediation,		
	Productivity applications and service,		
	Adwords, Google Analytics, Google Translate,		
	÷		
	(including introduction of Google APIs in		
	brief), major features of Google App Engine		
	service, Windows Azure platform: Microsoft's		
	approach, architecture, and main elements,		
	overview of Windows Azure AppFabric,		
	Content Delivery Network, SQL Azure, and		
	Windows Live services,		
	<u>Cloud Infrastructure</u> :	7	
2	Cloud Management:	1	
3	An overview of the features of network		
	management systems and a brief introduction		
	of related products from large cloud vendors,		
	Monitoring of an entire cloud computing		
	deployment stack – an overview with mention		
	of some products, Lifecycle management of		
	cloud services (six stages of lifecycle).		
	Concepts of Cloud Security:		
	Cloud security concerns, Security boundary,		
	Security service boundary Overview of		
	security mapping Security of data: Brokered		
	cloud storage access, Storage location and		
	tenancy, encryption, and auditing and		
	compliance		
	Identity management (awareness of Identity		
	protocol standards)		
	1	8	
4.	<u>Concepts of Services and Applications :</u>	-	
	Service Oriented Architecture: Basic concepts		
	-		
	of message-based transactions, Protocol stack		
	for an SOA architecture, Event-driven SOA,		
	Enterprise Service Bus, Service catalogs,		
	Applications in the Cloud: Concepts of cloud		
	transactions, functionality mapping,		
	nanouonono, ranononunty mupping,		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Application attributes, Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs	
Cloud-based Storage: Cloud storage definition – Manned and Unmanned	
Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail, Yahoo mail, concepts of Syndication services	

Text book and Reference books:

- 1. Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
- 2. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, McGraw Hill Education (India) Private Limited, 2013
- Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
 Cloud Computing, Miller, Pearson
- 5. Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson
- 6. Cloud Computing Second Edition by Dr. Kumar Saurabh, Wiley India

Digital Signal Processing Code: PEC-CS701C **Contacts: 3L**

Name of the Course:	Digital Signal Processing	
Course Code: PEC-CS701C	Semester: VII	
Duration:6 months	Maximum Mar	ks: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
		Attendance: 5 marks
Practical:	End Semester Exam: 70 Marks	
Credit Points:	3	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Unit	Content	Hrs/Unit	Marks/Unit
1	Module 1: Discrete-time signals and systems (6 hours) Discrete time signals and systems: Sequences; representation of signals on orthogonal basis; Representation of discrete systems using difference equations, Sampling and reconstruction of signals - aliasing; Sampling theorem and Nyquist rate.	6	
2	Module 2: Z-transform (6 hours) z-Transform, Region of Convergence, Analysis of Linear Shift Invariant systems using z transform, Properties of z-transform for causal signals, Interpretation of stability in z- domain, Inverse z-transforms.	6	
3	Module 2: Discrete Fourier Transform (10 hours) Frequency Domain Analysis, Discrete Fourier Transform (DFT), Properties of DFT, Convolution of signals, Fast Fourier Transform Algorithm, Parseval's Identity, Implementation of Discrete Time Systems.	10	
4.	Module 3:Designof Digital filters (12 hours) Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Low-pass, Band-pass, Band stop and High-pass filters. Effect of finite register length in FIR filter design. Parametric and non-parametric spectral estimation. Introduction to multi-rate signal processing.	12	
	Module 4: Applications of Digital Signal Processing (6 hours) Correlation Functions and Power Spectra, Stationary Processes, Optimal filtering using ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	6	

Text book and Reference books:

- 1. S. K. Mitra, "Digital Signal Processing: A computer based approach", McGraw Hill, 2011.
- 2. A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall, 1989.
- 3. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algorithms And Applications", Prentice Hall, 1997.
- 4. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
- 5. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
- 6. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John Wiley & Sons, 1988.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Multi-agent Intelligent Systems Code: PEC-CS701D Contacts: 3L

Contacts: 5L		
Name of the Course:	Multi-agent Intelligent Systems	
Course Code: PEC-CS701D	Semester: VII	
Duration:6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz : 10 marks
	Attendance: 5 marks	
Practical:	End Semester Exam: 70 Marks	
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: what is an agent?: agents and objects; agents and expert systems; agents and distributed systems; typical application areas for agent systems.	3	
2	Intelligent Agents: the design of intelligent agents - reasoning agents (eg AgentO), agents as reactive systems (eg subsumption architecture); hybrid agents (eg PRS); layered agents (eg Interrap) a contemporary (Java-based) framework for programming agents (eg the Jack language, the JAM! system).	9	
3	Multi-Agent Systems: Classifying multi-agent interactions - cooperative versus non-cooperative; zero-sum and other interactions; what is cooperation? how cooperation occurs - the Prisoner's dilemma and Axelrod's experiments; Interactions between self- interested agents: auctions & voting systems: negotiation; Interactions between benevolent agents: cooperative distributed problem solving (CDPS), partial global planning; coherence and coordination; Interaction languages and protocols: speech acts, KQML/KIF, the FIPA framework.	12	
4.	Advanced topics: One issue selected from the contemporary research literature, perhaps by guest lecturer.	9	

Text book and Reference books:

- 1. An Introduction to Multi Agent Systems Second Edition. Michael Wooldridge (Wiley, 2009)
- 2. Programming Multi-agent Systems in Agent Speak Using Jason. Rafael H. Bordini, Jomi Fred Hubner and Michael Wooldridge (Wiley, 2007)

Machine Learning Code: PEC-CS701E Contacts: 3L

Name of the Course:	Machine Learning	
Course Code: PEC-CS701D	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz: 10 marks	
		Attendance: 5 marks
Practical: Nil		End Semester Exam: 70 Marks
Credit Points:	3	

COURSE OBJECTIVE To learn the concept of how to learn patterns and concepts from data without being explicitly programmed To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances. Explore supervised and unsupervised learning paradigms of machine learning. To explore Deep learning technique and various feature extraction strategies. \square Hrs/unit Marks/unit Unit 1: 10 Supervised Learning (Regression/Classification) □ Basic methods: Distance-based methods, Nearest-Neighbours, Decision Trees, Naive Bayes □ Linear models: Linear Regression, Logistic Regression, Generalized Linear Models □ Support Vector Machines, Nonlinearity and Kernel Methods □ Beyond Binary Classification: Multi-class/Structured Outputs, Ranking

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2020-2021)

Unit 2: Unsupervised Learning	7
Clustering: K-means/Kernel K-means	
Dimensionality Reduction: PCA and kernel PCA	
Matrix Factorization and Matrix Completion	
□ Generative Models (mixture models and latent factor models)	
Unit 3	6
Evaluating Machine Learning algorithms and Model Selection, Introduction to	
Statistical Learning Theory, Ensemble Methods (Boosting, Bagging, Random	
Forests)	
Unit 4	9
Sparse Modeling and Estimation, Modeling Sequence/Time-Series Data, Deep	
Learning and Feature Representation Learning	
Unit 5	9
Scalable Machine Learning (Online and Distributed Learning)	
A selection from some other advanced topics, e.g., Semi-supervised Learning,	
Active Learning, Reinforcement Learning, Inference in Graphical Models,	
Introduction to Bayesian Learning and Inference	
Unit 6:	5
Recent trends in various learning techniques of machine learning and	
classification methods	

References:

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007
- 4. Dr. Rajiv Chopra, Machine Learning, Khanna Publishing House, 2018

Neural Networks and Deep Learning Code: PEC-CS702A Contacts: 3L

Name of the Course:	Neural Networks and Deep Learning	
Course Code: PEC-CS702A	Semester: VII	
Duration:6 months	Maximum Marks	s: 100
Teaching Scheme	Examination Scheme	
Theory: 3 hrs./week	Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz : 10 marks	
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Various paradigms of earning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques.	3	
2	Feed forward neural network: Artificial Neural Network, activation function, multi-layer neural network.cardinality, operations, and properties of fuzzy relations.	6	
3	Training Neural Network: Risk minimization, loss function, backpropagation, regularization, model selection, and optimization.	6	
4.	Conditional Random Fields: Linear chain, partition function, Markov network, Belief propagation, Training CRFs, Hidden Markov Model, Entropy.	9	
5	Deep Learning: Deep Feed Forward network, regularizations, training deep models, dropouts, Convolutional Neural Network, Recurrent Neural Network, Deep Belief Network.	6	
6	Deep Learning research: Object recognition, sparse coding, computer vision, natural language	6	

Text book and Reference books:

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
- 2. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 4. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.
- 6. Dr. Rajiv Chopra, Deep Learning, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Soft Computing Code: PEC-CS702B Contacts: 3L

Name of the Course:	Soft Computing	
Course Code: PEC- CS702B	Semester: VII	
Duration:6 months	Maximum Mark	s: 100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz : 10 marks	
		Attendance: 5 marks
Practical:		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction: Introduction to soft computing; introduction to fuzzy sets and fuzzy logic systems; introduction to biological and artificial neural network; introduction to Genetic Algorithm	8	
2	 Fuzzy sets and Fuzzy logic systems: Classical Sets and Fuzzy Sets and Fuzzy relations : Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions : Features of membership functions, standard forms and boundaries, different fuzzification methods. Fuzzy to Crisp conversions: Lambda Cuts for fuzzy sets, fuzzy Relations, Defuzzification methods. Classical Logic and Fuzzy Logic: Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting 	10	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

		10	
	Neural Network	10	
3	Introduction to Neural Networks: Advent of Modern		
	Neuroscience, Classical AI and Neural Networks,		
	Biological Neurons and Artificial neural network;		
	model of artificial neuron.		
	Learning Methods : Hebbian, competitive, Boltzman		
	etc., Neural Network models: Perceptron, Adaline and		
	Madaline networks; single layer network; Back-		
	propagation and multi layer networks.		
	Competitive learning networks: Kohonen self		
	organizing networks, Hebbian learning; Hopfield		
	Networks. Neuo-Fuzzy modelling: Applications of		
	Neural Networks: Pattern Recognition and		
	classification		
	Genetic Algorithms: Simple GA, crossover and	10	
4.	mutation, Multi-objective Genetic Algorithm		
	(MOGA). Applications of Genetic Algorithm: genetic		
	algorithms in search and optimization, GA based		
	clustering Algorithm, Image processing and pattern		
	Recognition		
5	PSO: Other Soft Computing techniques:	4	
-	Simulated Annealing, Tabu search, Ant		
	colony optimization (ACO), Particle		
	Swarm Optimization (PSO).		
	1	1	

Text book and Reference books:

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.
- 2. S. Rajasekaran and G.A.V.Pai, "Neural Networks,
- 3.
- S. Rajasekaran and G.A. V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI Principles of Soft Computing, S N Sivanandam, S. Sumathi, John Wiley & Sons Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, PHI Neural Networks: A Classroom Approach, 1/e by Kumar Satish, TMH, Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI A beginners approach to Soft Computing, Samir Roy & Udit Chakraborty, Pearson Fuzzy Sets and Fuzzy Logic: Theory and Applications, George J. Klir and Bo Yuan, Prentice Hall 4.
- 5.
- 6. 7.
- 8.
- <u>ŏ</u>. Prentice Hall
- 10. Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering

Syllabus for B. Tech in Computer Science & Engineerin (Applicable from the academic session 2020-2021)

Adhoc –Sensor Network Code: PEC-CS702C Contact: 3L

Name	e of the Course:	Adhoc –Sensor Network	
Cours CS70	e Code: PEC- 2 C	Semester: VII	
Durat	ion: 6 months	Maximum Marks	s: 100
Teac	hing Scheme	·	Examination Scheme
Theor	ry: 3 hrs		Mid Semester exam: 15
	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practi	ractical: 4 hrs End Semester Exam: 70 Marks		
Credi	t Points:	3	
Obje	ctive:		
1	provide an overview	about sensor netwo	rks and emerging technologies
2	To study about the node and network architecture of sensor nodes and its execution		
	environment.		
3		1	cation, MAC, routing protocols and also study
	about the naming and addressing in WSN		
4	To learn about topology control and clustering in networks with timing synchronization		
	for localization services with sensor tasking and control.		
	•		
5			d software platforms and understand the
	simulation and programming techniques		

Unit	Content	Hrs/Unit	Marks/Unit
1	Introduction and Overview [4L] :Overview of wireless networks, types, infrastructure-based and infrastructure-less, introduction to MANETs (Mobile Ad-hoc Networks), characteristics, reactive and proactive routing protocols with examples, introduction to sensor networks, commonalities and differences with MANETs, constraints and challenges, advantages, applications, enabling technologies for WSNs.	4	
2	Architectures Single-node architecture - hardware components, design constraints, energy consumption of sensor nodes , operating systems and execution environments, examples of sensor nodes,	9	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

	sensor network scenarios, types of sources and sinks – single hop vs. multi hop networks, multiple sources and sinks – mobility, optimization goals and figures of merit, gateway concepts, design princip		
3	Communication Protocols [9L] : Physical layer and transceiver design considerations, MAC protocols for wireless sensor networks, low duty cycle protocols and wakeup concepts - S-MAC, the mediation device protocol, wakeup radio concepts, address and name management, assignment of MAC addresses, routing protocols- classification, gossiping, flooding, energy- efficient routing, unicast protocols, multi- path routing, data-centric routing, data aggregation, SPIN, LEACH, Directed- Diffusion, geographic routing.	9	
4.	Infrastructure Establishment: Topology control, flat network topologies, hierarchical networks by clustering, time synchronization, properties, protocols based on sender-receiver and receiver-receiver synchronization, LTS, TPSN, RBS, HRTS, localization and positioning, properties and approaches, single-hop localization, positioning in multi-hop environment, range based localization algorithms – location services, sensor tasking and control Sensor Network Platforms and Tools		
	[9L]:Sensor node hardware, Berkeley motes, programming challenges, node- level software platforms, node-level simulators, state-centric programming, Tiny OS, nesC components, NS2 simulator, TOSSIM.		

Text book and Reference books:

1. 1.Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2005.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. REFERENCES
- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", John Wiley, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.
- 3. Thomas Haenselmann, "Sensor Networks", available online for free, 2008.

Information Theory and Coding Code: PEC-CS702D Contact: 3L

Name of the Course:	Information Theory and Coding	
Course Code: PEC- CS702D	Semester: VII	
Duration: 6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical:NIL		End Semester Exam: 70 Marks
Credit Points:	3	
Objective:		
1 To develop an unders performance perspect	e	etwork architectures from a design and
		epts involved in wide-area networks Wireless LANs (WLANs).
3 To provide an opport	unity to do network p	programming
4 To provide a WLAN	measurement ideas.	
Pre-Requisite:		
1		
2		
3		

Unit	Content	Hrs/Unit	Marks/Unit
1	Source Coding [7L] Uncertainty and information, average mutual information and entropy, information measures for continuous random variables, source coding	7	

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

	theorem, Huffman codes		
	Channel Capacity And Coding [7L]	7	
2	Channel models, channel capacity, channel coding,		
	information capacity theorem, The Shannon limit	0	
	Linear And Block Codes For Error	8	
3	Correction [8L]		
	Matrix description of linear block codes, equivalent codes, parity check matrix, decoding of a linear		
	block code, perfect codes, Hamming codes		
	Cyclic Codes [7L]	7	
4.	Polynomials, division algorithm for	,	
	polynomials, a method for generating		
	cyclic codes, matrix description of		
	cyclic codes, Golay codes		
5	BCH Codes [8L]	8	
	Primitive elements, minimal		
	polynomials, generator polynomials		
	in terms of minimal polynomials, examples of BCH codes.		
	examples of BCH codes.		
6	Convolutional Codes [8L]	8	
	Tree codes, trellis codes, polynomial		
	description of convolutional codes,		
	distance notions for convolutional		
	codes, the generating function, matrix		
	representation of convolutional codes,		
	decoding of convolutional codes,		
	distance and performance bounds for		
	convolutional codes, examples of		
	convolutional codes, Turbo codes,		
	Turbo decoding		

Text book and Reference books:

- 1. Information theory, coding and cryptography Ranjan Bose; TMH.
- 2. Information and Coding N Abramson; McGraw Hill.
- 3. Introduction to Information Theory M Mansurpur; McGraw Hill.
- 4. Information Theory R B Ash; Prentice Hall.
- 5. Error Control Coding Shu Lin and D J Costello Jr; Prentice Hall.

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Cyber Security Code: PEC-CS702E Contact: 3L

Name	of the Course:	Cyber Security	
Cours	e Code: PEC-CS702E	Semester: VII	
Durati	ion: 6 months	Maximum Marks:	100
Teach	ning Scheme	Examination Scheme	
Theor	y: 3 hrs./week		Mid Semester exam: 15
	ial: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practic	cal: NIL		End Semester Exam: 70 Marks
Credit	t Points:	3	
Objec	ctive:		
1	To develop an underst	anding of modern n	etwork architectures from a design and
	performance perspective.		
2	To introduce the student to the major concepts involved in wide-area networks		
	(WANs), local area networks (LANs) and Wireless LANs (WLANs).		
3	To provide an opportunity to do network programming		
4	To provide a WLAN measurement ideas.		

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction: Introduction to Cyber Security,		
1	Importance and challenges in Cyber Security,	6	
	Cyberspace, Cyber threats, Cyberwarfare, CIA		
	Triad, Cyber Terrorism, Cyber Security of Critical		
	Infrastructure, Cybersecurity - Organizational		
	Implications.		
	Hackers and Cyber Crimes: Types of Hackers,	7	
2	Hackers and Crackers, Cyber-Attacks and		
	Vulnerabilities, Malware threats, Sniffing, Gaining		
	Access, Escalating Privileges, Executing		
	Applications, Hiding Files, Covering Tracks,		
	Worms, Trojans, Viruses, Backdoors.		
	Ethical Hacking and Social Engineering: Ethical	8	
3	Hacking Concepts and Scopes, Threats and Attack		
	Vectors, Information Assurance, Threat Modelling,		
	Enterprise Information Security Architecture,		
	Vulnerability Assessment and Penetration Testing,		
	Types of Social Engineering, Insider Attack,		
	Preventing Insider Threats, Social Engineering		
	Targets and Defence Strategies.		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

4.	Cyber Forensics and Auditing: Introduction to Cyber Forensics, Computer Equipment and associated storage media, Role of forensics Investigator, Forensics Investigation Process, Collecting Network based Evidence, Writing Computer Forensics Reports, Auditing, Plan an audit against a set of audit criteria, Information Security Management System Management. Introduction to ISO 27001:2013	10	
5	Cyber Ethics and Laws: Introduction to Cyber Laws, E-Commerce and E-Governance, Certifying Authority and Controller, Offences under IT Act, Computer Offences and its penalty under IT Act 2000, Intellectual Property Rights in Cyberspace. at Network Layer-IPSec.	5	

Text book and Reference books:

- 1. Cyber security, Nina Gobole & Sunit Belapune; Pub: Wiley India.
- 2. Information Security and Cyber Laws, Pankaj Agarwal
- 3. Donaldson, S., Siegel, S., Williams, C.K., Aslam, A., Enterprise Cybersecurity -How to Build a Successful Cyberdefense Program Against Advanced Threats, A-press
- 4. Nina Godbole, SumitBelapure, Cyber Security, Willey
- 5. Hacking the Hacker, Roger Grimes, Wiley
- 6. Cyber Law By Bare Act, Govt Of india, It Act 2000.
- 7. Information Security & Cyber Laws, Gupta & Gupta, Khanna Publishing House, (AICTE Recommended Textbook- 2018)

Operation Research Code: OEC-CS701A **Contact: 3**L

Name of the Course:	Operation Research
Course Code: OEC-CS701A	Semester: VII
Duration: 6 months	Maximum Marks: 100

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
1	Basic LPP and Applications; Various Components of LP Problem Formulation.	17	
	Solution of Linear Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method;	1,	
	Definitions: Feasible Solution, Basic and non-		
	basic Variables, Basic Feasible Solution, Degenerate and Non-degenerate Solution, Convex set and explanation with examples Solution of LPP by Simplex Method; Charnes'		
	Solution of LPP by Simplex Method; Charnes' Big-M Method; Duality Theory. Transportation Problems and Assignment Problems.		
		9	
2	Network Analysis :Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERT- CPM (Cost Analysis, Crashing, Resource Allocation excluded).		
	Inventory Control:Introduction to EOQ Models of Deterministic and Probabilistic ; Safety Stock; Buffer Stock.		
		5	
3	Game Theory: Introduction; 2-Person Zero-sum Game; Saddle		
	Point; Mini-Max and Maxi-Min Theorems		
	(statement only) and problems; Games without		
	Saddle Point; Graphical Method; Principle of		
	Dominance		
4.	Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of the	5	
	Arrival & Departure (Poisson Queue). Poisson Queue Models: $(M/M/1)$: $(\infty /$		
	FIFO) and (M/M/1: N / FIFO) and problems.		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Text book and Reference books:

- 1.
- H. A. Taha, "Operations Research", Pearson P. M. Karak "Linear Programming and Theory of Games", ABS Publishing House Ghosh and Chakraborty, "Linear Programming and Theory of Games", Central Book 2.
- 3. Agency
- Ravindran, Philips and Solberg "Operations Research", WILEY INDIA 4.

Multimedia Systems Code: OEC-CS701B **Contacts: 3L**

Name of the Course:	Multimedia Systems		
Course Code: OEC- CS701B	Semester: VII	Semester: VII	
Duration: 6 months	Maximum Marks: 1	Maximum Marks:100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL	Assignment and Quiz: 10 marks		
Practical: Nil		Attendance : 5 marks	
Credit: 3		End Semester Exam :70 Marks	

Unit	Content	Hrs/U	Marks/
		nit	Unit
1	Introduction: Multimedia today, Impact of Multimedia, Multimedia Systems, Components and Its Applications	2	
	Text and Audio, Image and Video(14L)	14	
2	Text: Types of Text, Ways to Present Text, Aspects of		
	Text Design, Character, Character Set, Codes, Unicode,		
	Encryption; Audio: Basic Sound Concepts, Types of		
	Sound, Digitizing Sound, Computer Representation of		
	Sound (Sampling Rate, Sampling Size, Quantization),		
	Audio Formats, Audio tools, MIDI		
	Image: Formats, Image Color Scheme, Image		
	Enhancement; Video: Analogue and Digital Video,		
	Recording Formats and Standards (JPEG, MPEG, H.261)		
	Transmission of Video Signals, Video Capture, and		

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2020-2021)

	Computer based Animation.		
3.	Synchronization, Storage models and Access Techniques: Temporal relationships, synchronization accuracy specification factors, quality of service, Magnetic media, optical media, file systems (traditional, multimedia) Multimedia devices – Output devices, CD-ROM, DVD, Scanner, CCD	8	
4.	Image and Video Database, Document Architecture and Content Management (17L): Image representation, segmentation, similarity based retrieval, image retrieval by color, shape and texture; indexing- k- d trees, R-trees, quad trees; Case studies- QBIC, Virage. Video Content, querying, video segmentation, indexing, Content Design and Development, General Design Principles Hypertext: Concept, Open Document Architecture (ODA), Multimedia and Hypermedia Coding Expert Group (MHEG), Standard Generalized Markup Language (SGML), Document Type Definition (DTD), Hypertext Markup Language (HTML) in Web Publishing. Case study of Applications	17	
5.	Multimedia Applications(4L): Interactive television, Video-on-demand, Video Conferencing, Educational Applications, Industrial Applications, Multimedia archives and digital libraries, media editors	4	

Text book and Reference books:

Ralf Steinmetz and Klara Nahrstedt, Multimedia: Computing, Communications & 1. Applications, Pearson Ed.

2. Nalin K. Sharda, Multimedia Information System, PHI.

- 3. Fred Halsall, Multimedia Communications, Pearson Ed.
- 4. Koegel Buford, Multimedia Systems, Pearson Ed.
- 5. Fred Hoffstetter, Multimedia Literacy, McGraw Hill.

Ralf Steinmetz and Klara Nahrstedt, Multimedia Fundamentals: Vol. 1- Media Coding 6. and Content Processing, PHI.

J. Jeffcoate, Multimedia in Practice: Technology and Application, PHI. 7.

V.K. Jain, Multimedia and Animation, Khanna Publishing House, New Delhi (AICTE 8. Recommended Textbook - 2018)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

Introduction to Philosophical Thoughts Code: OEC-CS701C Contact: 3L

Name of the Course:	Introduction to Philosophical Thoughts		
Course Code: OEC-CS701C	Semester: VII		
Duration: 6 months	Maximum Marks:	100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam: 70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
1	Nature of Indian Philosophy : Plurality as well as common concerns. 2. Basic concepts of the Vedic and Upanisadic views : Atman, Jagrata, Svapna, Susupti, Turiya, Brahman, Karma, Rta,Rna,	17	
2	Carvaka school : its epistemology, metaphysics and ethics. Mukti	9	
3	Jainism : Concepts of sat, dravya, guna, paryaya, jiva, ajiva, anekantavada, syadvada, and nayavada ; pramanas, ahimsa, bondage and liberation.		
4	5. Buddhism : theory of pramanas, theory of dependent origination, the four noble truths; doctrine of momentaryness; theory of no soul. The interpretation of these theories in schools of Buddhism : Vaibhasika, Sautrantrika, Yogacara, Madhyamika.	5	
5	6. Nyaya : theory of Pramanas; the individual self and its liberation ; the idea of God and proofs for His existence.	5	

Text book and Reference books:

1. M. Hiriyanna : Outlines of Indian Philosophy.

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

- 2. C.D.Sharma : A Critical Survey of Indian Philosophy.
- 3. S.N.Das Gupta : A History of Indian Philosophy Vol I to V.
- 4. S.Radhakrishnan : Indian Philosophy Vol I & II.
- 5. T.R.V.Murti : Central Philosophy of Buddhism.
- 6. J.N.Mahanty : Reason and Tradition of Indian Thought.
- 7. R.D.Ranade : A Constructive Survey of Upanisadic Philosophy.
- 8. P.T.Raju : Structural Depths of Indian Thought.
- 9. K.C.Bhattacharya : Studies in Philosophy Vol 1.
- 10. Datta and Chatterjee : Introduction of Indian Philosophy

Project Management and Entrepreneurship Code: HSMC 701 Contact: 2L+1T

Name of the Course:	Project Management and Entrepreneurship	
Course Code: HSMC 701	Semester: VII	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme		Examination Scheme
Theory: 3 hrs./week		Mid Semester exam: 15
Tutorial: 1hr		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam: 70 Marks
Credit Points:	3	

ENTREPRENEURSHIP

- 1. Introduction: Meaning and Concept of Entrepreneurship, Innovation and entrepreneurship, Contributions of entrepreneurs to the society, risk-opportunities perspective and mitigation of risks [2L]
- Entrepreneurship An Innovation: Challenges of Innovation, Steps of Innovation Management, Idea Management System, Divergent v/s Convergent Thinking, Qualities of a prospective Entrepreneur [2L]
- 3. Idea Incubation: Factors determining competitive advantage, Market segment, blue ocean strategy, Industry and Competitor Analysis (market structure, market size, growth potential), Demand-supply analysis [4L]
- 4. Entrepreneurial Motivation: Design Thinking Driven Innovation, TRIZ (Theory of Inventive Problem Solving), Achievement motivation theory of entrepreneurship Theory of McClelland, Harvesting Strategies [2L]
- Information: Government incentives for entrepreneurship, Incubation, acceleration. Funding new ventures – bootstrapping, crowd sourcing, angel investors, Government of India's efforts at promoting entrepreneurship and innovation – SISI, KVIC, DGFT, SIDBI, Defense and Railways [4L]
- 6. Closing the Window: Sustaining Competitiveness, Maintaining Competitive Advantage, the Changing Role of the Entrepreneur. [2L]

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

- 7. Applications and Project Reports Preparation [4L]
- 8. PROJECT MANAGEMENT : Definitions of Project and Project Management, Issues and Problems in Project Management, Project Life Cycle - Initiation / Conceptualization Phase, Planning Phase, Implementation / Execution Phase, Closure / Termination Phase [4L]
- 9. Project Feasibility Studies Pre-Feasibility and Feasibility Studies, Preparation of Detailed Project Report, Technical Appraisal, Economic/Commercial/Financial Appraisal including Capital Budgeting Process, Social Cost Benefit Analysis [2L]
- Project Planning Importance of Project Planning, Steps of Project Planning, Project Scope, Work Breakdown Structure (WBS) and Organization Breakdown Structure (OBS), Phased Project Planning [2L]

11. Project Scheduling and Costing – Gantt chart, CPM and PERT Analysis, Identification of the Critical Path and its Significance, Calculation of Floats and Slacks, Crashing, Time Cost Trade-off Analysis, Project Cost Reduction Methods. [6L]

- 12. Project Monitoring and Control Role of Project Manager, MIS in Project Monitoring, Project Audit [2L]
- 13. Case Studies with Hands-on Training on MS-Project [4L]

Text Books and References

- 1. Innovation and Entrepreneurship by Drucker, P.F.; Harper and Row
- 2. Business, Entrepreneurship and Management: Rao, V.S.P. ;Vikas
- 3. Entrepreneurship: Roy Rajeev; OUP.
- 4. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan
- 5. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn, H.; PHI
- 6. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

Project-II Code: PROJ-CS781 Contact: 12P

Project work I

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

Project Work II & Dissertation

The object of Project Work II & Dissertation is to enable the student to extend

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Computer Science & Engineering (Applicable from the academic session 2020-2021)

further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

- 1. In depth study of the topic assigned in the light of the Report prepared under EC P1;
- 2. Review and finalization of the Approach to the Problem relating to the assigned topic;
- 3. Preparing an Action Plan for conducting the investigation, including team work;
- 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
- 5. Final development of product/process, testing, results, conclusions and future directions;
- 6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
- 7. Preparing a Dissertation in the standard format for being evaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee.